Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 18(1): 251-272, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34898215

RESUMEN

An algorithm to perform stochastic generalized active space calculations, Stochastic-GAS, is presented, that uses the Slater determinant based FCIQMC algorithm as configuration interaction eigensolver. Stochastic-GAS allows the construction and stochastic optimization of preselected truncated configuration interaction wave functions, either to reduce the computational costs of large active space wave function optimizations, or to probe the role of specific electron correlation pathways. As for the conventional GAS procedure, the preselection of the truncated wave function is based on the selection of multiple active subspaces while imposing restrictions on the interspace excitations. Both local and cumulative minimum and maximum occupation number constraints are supported by Stochastic-GAS. The occupation number constraints are efficiently encoded in precomputed probability distributions, using the precomputed heat bath algorithm, which removes nearly all runtime overhead of GAS. This strategy effectively allows the FCIQMC dynamics to a priori exclude electronic configurations that are not allowed by GAS restrictions. Stochastic-GAS reduced density matrices are stochastically sampled, allowing orbital relaxations via Stochastic-GASSCF, and direct evaluation of properties that can be extracted from density matrices, such as the spin expectation value. Three test case applications have been chosen to demonstrate the flexibility of Stochastic-GAS: (a) the Stochastic-GASSCF [5·(6, 6)] optimization of a stack of five benzene molecules, that shows the applicability of Stochastic-GAS toward fragment-based chemical systems; (b) an uncontracted stochastic MRCISD calculation that correlates 96 electrons and 159 molecular orbitals, and uses a large (32, 34) active space reference wave function for an Fe(II)-porphyrin model system, showing how GAS can be applied to systematically recover dynamic electron correlation, and how in the specific case of the Fe(II)-porphyrin dynamic correlation further differentially stabilizes the 3Eg over the 5A1g spin state; (c) the study of an Fe4S4 cluster's spin-ladder energetics via highly truncated stochastic-GAS [4·(5, 5)] wave functions, where we show how GAS can be applied to understand the competing spin-exchange and charge-transfer correlating mechanisms in stabilizing different spin-states.

2.
J Chem Phys ; 155(1): 011102, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241381

RESUMEN

We demonstrate how similarity-transformed full configuration interaction quantum Monte Carlo (FCIQMC) based on the transcorrelated Hamiltonian can be applied to make highly accurate predictions for the binding curve of the beryllium dimer, marking the first case study of a molecular system with this method. In this context, the non-Hermitian transcorrelated Hamiltonian, resulting from a similarity transformation with a Jastrow factor, serves the purpose to effectively address dynamic correlation beyond the used basis set and thus allows for obtaining energies close to the complete basis set limit from FCIQMC already with moderate basis sets and computational effort. Building on results from other explicitly correlated methods, we discuss the role of the Jastrow factor and its functional form, as well as potential sources for size consistency errors, and arrive at Jastrow forms that allow for high accuracy calculations of the vibrational spectrum of the beryllium dimer.

3.
J Phys Chem A ; 125(22): 4727-4740, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34048648

RESUMEN

Polynuclear transition-metal (PNTM) clusters owe their catalytic activity to numerous energetically low-lying spin states and stable oxidation states. The characterization of their electronic structure represents one of the greatest challenges of modern chemistry. We propose a theoretical framework that enables the resolution of targeted electronic states with ease and apply it to two [Fe(III)4S4] cubanes. Through direct access to their many-body wave functions, we identify important correlation mechanisms and their interplay with the geometrical distortions observed in these clusters, which are core properties in understanding their catalytic activity. The simulated magnetic coupling constants predicted by our strategy allow us to make qualitative connections between spin interactions and geometrical distortions, demonstrating its predictive power. Moreover, despite its simplicity, the strategy provides magnetic coupling constants in good agreement with the available experimental ones. The complexes are intrinsically frustrated anti-ferromagnets, and the obtained spin structures together with the geometrical distortions represent two possible ways to release spin frustration (spin-driven Jahn-Teller distortion). Our paradigm provides a simple, yet rigorous, route to uncover the electronic structure of PNTM clusters and may be applied to a wide variety of such clusters.

4.
J Chem Phys ; 153(22): 224115, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317277

RESUMEN

In a recent paper, we proposed the adaptive shift method for correcting undersampling bias of the initiator-full configuration interaction (FCI) quantum Monte Carlo. The method allows faster convergence with the number of walkers to the FCI limit than the normal initiator method, particularly for large systems. However, in its application to some systems, mostly strongly correlated molecules, the method is prone to overshooting the FCI energy at intermediate walker numbers, with convergence to the FCI limit from below. In this paper, we present a solution to the overshooting problem in such systems, as well as further accelerating convergence to the FCI energy. This is achieved by offsetting the reference energy to a value typically below the Hartree-Fock energy but above the exact energy. This offsetting procedure does not change the exactness property of the algorithm, namely, convergence to the exact FCI solution in the large-walker limit, but at its optimal value, it greatly accelerates convergence. There is no overhead cost associated with this offsetting procedure and is therefore a pure and substantial computational gain. We illustrate the behavior of this offset adaptive shift method by applying it to the N2 molecule, the ozone molecule at three different geometries (an equilibrium open minimum, a hypothetical ring minimum, and a transition state) in three basis sets (cc-pVXZ, X = D, T, Q), and the chromium dimer in the cc-pVDZ basis set, correlating 28 electrons in 76 orbitals. We show that in most cases, the offset adaptive shift method converges much faster than both the normal initiator method and the original adaptive shift method.

5.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716189

RESUMEN

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

6.
Phys Rev Lett ; 121(5): 056401, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30118296

RESUMEN

We present a stochastic method for solving the time-dependent Schrödinger equation, generalizing a ground state full configuration interaction quantum Monte Carlo method. By performing the time integration in the complex plane close to the real-time axis, the numerical effort is kept manageable and the analytic continuation to real frequencies is efficient. This allows us to perform ab initio calculation of electron spectra for strongly correlated systems. The method can be used as a cluster solver for embedding schemes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...